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Monte Carlo Studies of Nuclear 
Many-Particle Systems 

J. W. N e g e l e  ~ 

Stochastic evaluation of path integrals provides a useful tool for the study of a 
variety of nuclear systems which are otherwise not amenable to definitive 
analysis through perturbative, variational, or stationary-phase approximations. 
Ground state properties of potential models, such as quantum fluctuations in 
the density, are examined. Tunneling problems in quantum many-particle 
systems, such as spontaneous fission and the ground state structure of systems 
with degenerate vacuua are treated by incorporating one's physical 
understanding of the essential collective degrees of freedom in the stochastic 
algorithm. The role of subnuclear degrees of freedom is studied by comparing 
the exact solution of a simple confining quark model with the solution to a 
phase-shift equivalent hadronic potential model. 

KEY WORDS: Path-integral Monte Carlo; tunneling in many degrees of 
freedom: fission; solution of confining quark model. 

1. I N T R O D U C T I O N  

Path integrals provide a useful physical perspective from which to 

approach Monte  Carlo studies of q u a n t u m  systems with many  degrees of 
freedom. This approach retains the physical insight provided by summing  
over time histories, and  the Monte  Carlo method  may be viewed simply as 

an alternative to the s ta t ionary-phase  approx ima t ion  for summing  all the 

fluctuations a round  the s ta t ionary paths. It has the advantage  that  one 

may directly exploit the usual  freedom in formula t ing  path integrals for 
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quantal systems and utilize one's physical understanding of stationary 
solutions such as instantons. It therefore provides a natural perspective 
from which to develop stochastic methods which incorporate as much 
physics as possible. Relative to the Green's function Monte Carlo method 
described by Kalos and Ceperley (see Ref. 1 and in contributions to this 
conference) the path-integral Monte Carlo method has the apparent dis- 
advantage of requiring an extrapolation in the time step size Az --, 0, and 
the compensating advantage that for any fixed Ar evolution is simpler and 
more efficient. In practical calculations, the two methods are roughly com- 
parable. 

To distinguish the nuclear physics problems discussed in this work 
from applications in other fields, it is useful to summarize the salient 
features of the nuclear many-body problem. 

One crucial feature is the presence of diverse physical scales. The 
nucleon nucleon interaction is strongly repulsive at separations less than 
0.5 fm and strongly attractive in the region of 1 fm so that the range of 
rapid variation of the potential is characterized by Ax  ~ 0.2 fm. Since a 
heavy nucleus has a radius of the order of 7 fm and a diffuse surface, it 
must be calculated in a box of linear dimension at least L ~ 20 fm on a side. 
These values of Ax  and L imply that if the nuclear many-body problems 
were to be formulated on a lattice, for example using a functional integral 
over an auxiliary field, the lattice must have (10) 3 spatial points. 

A conservative estimate of the time mesh size required to approach the 
continuum limit is obtained by requiring that the distance a particle 
evolves under the kinetic energy operator in time Az be small compared 
with the characteristic scale of variation of the potential Ax so that 

m(Ax)2 ~ 5 
Az" < • 10  - 4  MeV 1 

2 

To evaluate ground state properties, we need ~AE>> 1, where A E  is the 
excitation energy of the first excited state. Even for nuclei with no low 
energy collective excitations/~ < (1/2 MeV) requiring 1000 time steps, and 
for a rotational band in which the first excited state is ~200 keV, an 
additional order of magnitude is required. Thus, description of a heavy 
nucleus on a space-time lattice would require (100) 3 x 1000 sites, which is 
four to five orders of magnitude more than any lattice gauge calculation 
and totally prohibitive on any foreseable computer. This diversity of 
physical scales may be stated equivalently in terms of energies. One seeks a 
Monte Carlo method which simultaneously treats the dynamics of short 
range correlations with energies of the order of hundreds of MeV, single 
particle excitations of order 10 MeV, and collective effects as low as a frac- 
tion of an MeV. 
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In addition to diverse energy scales, we must also address the physics 
of substructure. Whereas some aspects of subnuclear structure may be 
described by meson degrees of freedom, we must ultimately understand the 
role of quark and gluon degrees of freedom in nuclear structure. On the 
one hand, we need to understand how a low-energy effective Hamiltonian 
in hadron degrees of freedom arises from the underlying theory and why 
potential theories yield such a quantitatively accurate description of 
energies, densities, structure, and reactions. On the other hand, we wish to 
understand signatures of substructure, such as the EMC effect, which tells 
us how the distribution of quarks in a nucleon within a nucleus differs from 
that in an isolated nucleon. Clearly, when the lattices used for Monte Carlo 
studies QCD can barely contain a proton and only qualitatively reproduce 
the observed hadron spectrum, we are far from bringing the tools of quan- 
tum Monte Carlo to bear directly on realistic calculations of nuclear sub- 
structure. 

This hard assessment of the scope of the problems posed by diverse 
physical scales and by quark-gluon substructure clearly indicates that for 
the present, Monte Carlo studies in nuclear physics must concentrate on 
pedagogical models rather than definitive realistic calculations. In the 
remainder of this paper, ! explain how our understanding of some of the 
underlying physics is incorporated in stochastic calculations and discuss 
what is being learned from studies of models. 

2. F R E E D O M  IN F O R M U L A T I N G  S T O C H A S T I C  M E T H O D S  

As is evident from the great diversity of approaches discussed at this 
conference, there is a tremendous amount of freedom in formulating Monte 
Carlo methods to study many-body problems. The principal intellectual 
challenge, therefore, is to exploit this freedom and to utilize one's physical 
insight to incorporate as much of the essential physics of the problem as 
possible into the stochastic algorithm. 

There are three primary categories of choices which will be discussed 
here: the physical quantity to calculate, the functional integral represen- 
tation used to formulate the path integral, and the choice between sampling 
the global action or solving an initial-value diffusion problem. 

The first question is what physical quantity to evaluate. One option is 
the trace of the evolution operator Z,, (n [e-~HI n),  which provides all 
thermodynamic information at inverse temperature ft. Whereas this is 
obviously useful for a system that is in thermodynamic equilibrium, it 
precludes incorporating knowledge of the structure of a specific state. A 
second option treated in detail below is to choose a specific matrix element 
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of e-~H which is optimal for calculation of a particular observable. (2'3) For 
example, in the limit of large/3, the ground state energy may be written 

<@ le-~HI @> (2.1) 

where I%> is an approximate wave function. The expectation value of an 
operator (_9 may be written exactly as 

(~1 e-~HOe-PH ]qt> 
<o> = 

<~1 e-2l~H 1r 

~ 2  <le_nh lob> <~1~5 (2.2) 

The phase shift for the scattering of two composite particles at energies 
below the excitation threshold for the first excited state is obtained by 
imposing the boundary condition that the wave functions vanish at a 
specified fragment separation distance and evaluating the energy E of the 
total system as a function of this distance. (4) The fission lifetime may be 
calculated, exactly, below the threshold for fragment excitation by 
calculating the scattering phase shift it may be calculated, approximately, 
for any high barrier by calculating the overlap matrix element V between 
interior and exterior states (5) 

<~int] eSH Iq~ext > 
= tan h(V~) (2.3) 

[-<~intl e-BH [r ><Oext] e-l~H I@ext>] 1/2 

A second choice is the functional integral representation. r Different. 
yet exact, functional integrals may be obtained by inserting alternative 
resolutions of unity at each time step: integrals over coordinate states, 
alternate integrate over coordinate and momentum states, boson coherent 
states, overcomplete sets of Slater determinants, and Grassman coherent 
states, to name a few. Alternatively, by applying the Hubbard Stratonovich 
transformation, the many-body evolution operator may be expressed as an 
integral over an auxiliary field of a one-body evolution operator. Whereas 
each form has its distinct advantages and limitations, in view of the 
exceedingly large mesh size necessitated by the behavior of the nuclear 
force for any functional integral over fields, the Feynman path integral in 
coordinate representation is most suitable for our present purposes. 

Finally, the last question is whether to repeatedly sample the action 
for the system, thereby generating a sequence of complete time histories, 
or to formulate an initial value problem in which an initial ensemble of 
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points is evolved in time to generate an ensemble of time histories. It is 
particularly appropriate to discuss sampling the action at this meeting 
honoring Nic Metropolis on the occasion of his seventieth birthday, since 
application of the celebrated method of Metropolis et al. (7t provides an 
extremely satisfying physical treatment of tunneling problems described in 
the next section. 

The initial value formulation offers the opportunity to incorporate any 
understanding one has of the behavior of the wave function directly in the 
random walk. The basic idea of this initial value random walk is simple. 
Let us decompose the infinitesimal evolution operator into the product of a 
Gaussian probability and a residual weight as follows 

2 ~  d--(rt]/'2{z}(gn Xn-l) 2 e--SEV(-rn 1) E] 
(n] e ~:(/~" - E) IX n 1 ) ~ (2.4) 

=-P(x,,,x,,_I) W(x,, 1) 

so that 

= f dxj ..... clxl~,(x,,) P(x,,, x,,_ 1) 

X W(X,I 1) ..... P(x3, x2) W(N2) P(x2, x1) m ( x l )  ~b(Xl) (2.5) 

This product of probabilities and weights is evaluated as follows. First, xl 
is randomly selected according to the distribution function ~bh(xl), which 
may be chosen to be positive, and the temporary value of the score is 
defined to be W(xl). Given Xl, x2 is chosen to be Gaussian-distributed 
about xj according to the probability P(x2, x~), and the score is multiplied 
by W(x2). This procedure is repeated for all n; finally x,, is chosen to be 
Gaussian-distributed about x , , - 1  and the score is multiplied by ~b,(xn). 
For an ensemble of such calculations, each score ~b,(xn)l-In=l 1 W(xi) is 
obtained with probability lq,"=l 1 P(xi+~,xi)~b(Xl) so that the average 
value of the score for a large ensemble of random samples approaches 

The statistical accuracy of this basic method may be improved greatly 
by replicating points at each step with probability proportional to W(x,,) 
instead of accumulating the weight W(x,,) in the score. The calculation may 
then be viewed as a diffusion process with a source-sink term W(x) and dif- 
fusion term P(Xm, Xm--1). An initial ensemble of points {x i} distributed 
according to q~b(x) is first diffused by the Gaussian P(x2, xl). In regions 
where V(x)> E, W(x ~) < 1 and the point x ~ is deleted from the ensemble 
with probability 1 - W ( x g .  When W(xi)> t, the point x ~ is always 

822/43/5-6-18 
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replicated [W(xi)] times (where [-W] denotes the greatest integer in W) 
and with probability W(xi) - [W(xi)] it is replicated one additional time. 

i In each successive step, points diffuse according to P(X~m, X m ~) and are 
replicated according to W(Xm). Thus, elements of the ensemble are created 
in regions of attractive V -  E and deleted in regions of repulsive V -  E such 
that the final ensemble of points {xn} is distributed according to 
~ I n - - 1 1  P(Xm+l, Xm) W ( x i )  O(xi) and (0~1 e-~(H E)10~) is given by the 
average value of 0a(x) evaluated with the ensemble {x, }. Whereas the first 
method retains ensembles having products of weights I17=1 W(xi) which 
may vary over many order of magnitude with corresponding loss of 
statistical accuracy, in the replication method each member of the final 
ensemble {xn} contributes with the same weight. In practice, the value of E 
is selected to maintain a constant average ensemble size and yields an 
independent evaluation of the ground state energy. 

A major improvement in the initial value problem is to guide the ran- 
dom walk using an approximate trial wave function ~b(x) which contains as 
much of the essential physics as may be understood at the outset. The 
infinitesimal evolution operator for the product 0(x) O(x) is 
0(2) e-~H(~[1/O(2)], which to leading order in e has the matrix element 

<x,,lO(2) e ~(~ E) 1 [X,~ 1) 
0()?) 

- ~ 2  m e[m/2g(xn l ) ] (xn -'ca 1 (e/m)[gb'(.Vn l ) /~ (Xn-I ) ] )  2 

0e(7o ,) 
x e ~,EE (l/2m)qS"(xn l ) + v ( x n  l)0(.vn t)]/q~( .... 1)] (2.6) 

This evolution operator differs from (2.4) in three respects. The 
Gaussian diffusion term is shifted by a drift term proportional to 0'/0, 
which guides members of the ensemble away from regions where the wave 
function is small so that the points sample most densely the region in 
which the contribution in the largest. The source-sink term is now 
( H - E )  0/0 instead of V - E .  In the limit in which 0 is exact, this term is 
just a constant, there are no fluctuations in the population, all the physics 
is contained in the drift term, and the statistical variance is a minimum. To 
the extent to which 0 incorporates much of the essential physics, the 
evolution is guided by that portion of the physics through the drift term, 
and the stochastic treatment of the source term is only required to treat the 
remnant of the physics which is left out of the trial function. Finally, in 
principle, the size of the Gaussian step g(x._ 1) depends upon x._ ,, 

g(x)=gll  e ]-1 
m ~ In 0(x) 
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although in the special case of an oscillator, this yields an irrelevant scale 
factor and in most practical applications the effect is negligible. (s) Trial 
functions have been utilized extensively in the closely related Greens 
function Monte Carlo method, and in a variety of physical applications are 
absolutely necessary to render a calculation practmaL" , (l) More generally,'" (9) 
a time-dependent trial function ~b(x, t) may be used to guide the random 
walk in evaluating the matrix element (qibl e -~H I~b~). In this case the 
source-sink term is [(c?/& + H)/~]  ~ so that the optimal choice is the time 
reverse of the solution to the imaginary time Schr6dinger equation with the 
initial condition q5 = q5 b. 

The many-fermion problem may be treated formally in the same way 
as the one-body problem. The matrix element of the infinitesimal evolution 
operator between antisymmetrized states is 

<x7 . . . .  ~ ... �9 XAIOe ~:l,9-u/ IX 7 l, ,XA n--l> 

e i,,/2el(.G,-x'/-' oice'-'))2-~s(x" b (2.7) 
= E(-I)P L~j 

P 

where the drift term is 
e d 

n - -  1 l -  1 D,(x ~)-  - - l n q S ( x ' r  ~ ..... Xa ) 
m dx'/-1 

and the source term is 

S(x"  1) = ( / ~ - E ) ~ ( x ' '  t) 
~5(x" ~) 

In more than one spatial dimension, interference between positive and 
negative contributions to the functional integral degrades the statistical 
accuracy such that very good trial functions and exceedingly large ensem- 
bles are required to obtain useful results. (m/ In one dimension, however, 
antisymmetry completely specifies the nodal points and a positive definite 
result may be obtained by simply evolving the wavefunction in the sub- 
space xl < x2 < x3 ..... XA. AS described in Ref. 3, it is useful to approximate 
the determinant by 

(-- 1) Pe -~''/2~)(x"e, --~7 l_ too2 
P 

= e-(~/2~lX,(x7 x'/-* D,)2 det le (m/2~[C4 *7 ' O:~--<,'--x7 ~-0,~] I 

A 
e (m/2e)Zi(xn x',' l--Di)2 1--I (1--e  -(m/e)(x:'-x'/-*)(x'~-* o, -g2{+Di-1)) 

i = 2  
(2.8) 

which includes the effect of the first images surrounding each node. 
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3, TUNNELING 

Tunneling in systems with many degrees of freedom arises in many 
areas of physics. Although this work was motivated by problems such as 
spontaneous and induced fission and subbarrier fusion in nuclear physics, 
similar problems abound in many disciplines: tunneling in solid state 
devices, the contribution of cyclic permutations to the ground state energy 
of solid ~3) HE systems with multiply degenerate vacuua in field theory, and 
a rich variety of molecular and biological systems. 

The usual approximation for these tunneling problems is reduction to 
a one-body problem with an effective mass and effective potential. Such a 
reduction necessarily involves the imposition or derivation of a collective 
variable. Although the theory includes the average effects of other degrees 
of freedom, it cannot include direct coupling to them. 

Path integrals provide a natural and convenient framework for 
addressing tunneling in systems with many degrees of freedom. A great deal 
of physical insight into this tunneling has been obtained by application of 
the stationary phase approximation to an appropriately formulated path 
integral. The basic idea developed by Langer, ~11) Polyakov, ~2/ and 
Coleman I~3/ is to find the appropriate stationary path, referred to as a 
"bubble," "instanton," or "bounce," which connects the two relevant 
classically allowed regimes. In this section, I will sketch the basic ideas, 
described in detail elsewhere, ~14'5) of how this qualitative physics is incor- 
porated in a Monte Carlo calculation. 

Tunneling Observables wi th  Euclidean Data Integrals 

In real time, the evolution of probability out of the region of a 
metastable state directly specifies the lifetime of a metastable state. After 
Wick rotation to imaginary time, which is necessary in order to obtain a 
real path integral amenable to Monte Carlo evaluation, evolution of the 
wave function through the barrier is no longer directly related to the 
lifetime, so we formulate an appropriate imaginary time observable from 
which the lifetime may be extracted. 

The first question is thus how to calculate the lifetime of a metastable 
state in terms of a Euclidean path integral. The basic idea that we use is 
sketched for a one-dimensional barrier in Fig. 1. The lowest eigenstate in 
the potential V(x) with an infinite wall at a corresponds to a scattering 
wave function in the full domain with the same energy having a node at a. 
Since E specifies the momentum k and a specifies the phase shift 6, 
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V(x) 

CI 

VL(X) . . . . . .  

999 

VR(X) 

Fig. 1. Potential for a metastable state in one dimension. 

calculating the energy E(l~(a) of the lowest eigenfunction as a function of 
the wall position a, in principle, specifies 6(k) and thus the lifetime 

6(k)=6o+bk+tan I(?/ko-k) 

where y = (m/2ko) F. 
For the high barriers and long lifetimes of interest in this work, it is 

impractical to calculate 6(k) to sufficient precision to evaluate y, so it is 
perferable to relate 7 to the splitting of two degenerate ground states. Thus, 
let us decompose V(r) into the left and right wells sketched in Fig. 1 and 
adjust a such that EL = ER. Then, one mayshow, either by using the bound 
state condition 6(k)= nTr- ka or the Kohn variational principle, that 

m 

Y -  4(dE/da~) (AE) 2 leL=eR 1+(9 y (3.2) 

where zlE is the energy splitting between the two lowest states in the 
degenerate double well. Note that this result has the form expected from 
the Fermi Golden Rule of a transition matrix element squared (since 
AE,,, (~L] Av ]~bR)) times a density of states [related to (dE/da)-l]. 

The next question is how to evaluate AE. It is prefereable to use a 
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quantity which is dominated by paths connecting the left and right wells, 
and the most satisfactory quantity we have found is the ratio 

<~LI e ~H I~R> 
R =  E<~LI e -~H I~L><~RI e - ~  I~R>] '/~ (3.3) 

where ~bL and ~bR are trial wave functions localized in the left and right 
wells, respectively. For  the special case of a symmetrical well with the 
definition c~ --- (< 1 ]~bL )/<0{qIL ))2 

1-ae -p~e ( flAE~2 In c~) �9 = tan h (3.4) 
R fl(E2_ E0) >> 1 1 +~ze -/~J~ 

Hence, the constant AE may be obtained by calculating 

2 t a n h  ~R lnc~ 
AEeff(fl) -= -- zIE -- - -  (3.5) 

P 

at several values of/~ and separating the 1/fl correction. 

Stochastic Calculation of Tunneling with 
One Degree of Freedom 

The essential difficulties encountered in tunneling problems and their 
solutions may be illustrated for the case of the symmetric double well 

2m dx 2 + (x2 - 1 )2 @ = gO (3.6) 

The spatial coordinate has been scaled such that the minima occur at 
x = + 1 and the energy has been scaled such that the barrier height is 1, so 
that the penetrability of the barrier is controlled by m. For  orientation, it is 
useful to note the properties of the instantion solution which satisfies the 
classical equations of motion in the inverted well 

x(~) = tan hy~: (3.7) 

with y = xf2/m leading to an approximate splitting 

A E =  2•e so (3.8) 

where S o = ~  x / ~  and ~c = (4 ~/x//~)(8/m) 1/4. In the dilute instanton gas 
approximation, the probability of a configuration containing n instantons 
is P(n) = [(/~K) n e ns~ The harmonic approximation about the minima 
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yields a harmonic oscillator energy �89 For mass rn = 4, Eo = .572 
compared with 0/2=.707, and E 1 - E 2 = . l 1 6  compared with AE~.175 
from (14) so that this mass corresponds to a low barrier. In contrast, 
m = 12 corresponds to a high barrier; Eo =.381 is comparable to the har- 
monic result 0)/2 =.408, and the instanton approximation A E ~  0.0084 is 
reasonably close to the small splitting 0.0089. 

The Feynman path integral 

N 

<x,,I e r  dxn l,...,dXl H e-(m(~'-~'-~)2/2~l (u(xi)+v(xi-l)/2)e 
i = l  

(3.9) 

is evaluated by using the Metropolis (7) algorithm to sample the action. 
A Markov chain of configurations {2 (1), 2 (2) ..... } is generated by a rule 

p(2(,,t ~ 2(,, + 1)) specifying the probability of obtaining 2 (n + 1) from 2 (n/and 
satisfying the microreversibility requirement e s(xlP(2--, f )=e-S(v~  
P(f i~2) .  In the form we use here, a tentative configuration, 2r, is 
generated according to some convenient symmetrical rule F ( A ~ Y r ) =  
F ( Y r ~ x ) .  Then, if A S - S ( 2 r ) - S ( 2 ) < < , 0  this tentative configuration is 
accepted, that is, Y-Yr-  If AS>O, the configuration is accepted with 
probability e -3s  and rejected; that is •= 2 with probability 1 - e-~s 

The most common implementation is sequential updating of the 
variables on each time slice by defining x i T =  x i+ ~Ax with ~ uniformaly 
distributed on the interval (-�89 �89 Whereas this method is satisfactory for 
many applications, consider the problem of updating a configuration in 
which every point of the trajectory is localized in the left well. The cost in 
action for a variable Xm to cross the barrier from one minimum to the 
other in a single step is AS ~ 4rn/e. Once Xm has crossed the barrier there is 
no additional cost for each subsequent variable to cross, and the total 
probability of creating an instanton in this way in a single sweep is propor- 
tional to (B/e) e -(4ml~) compared to the physical probability 
(4 ,,f2/x/-s 1/4 Be (4/3),/~. For extremely large values of the time step, 

e > x/-~, there is no problem, and the equilibrium Metropolis distribution 
correctly samples configurations of all numbers of instantons. (~5) However, 
for e ~ ~f~, as required to adequately approach the continuum limit for 
problems of physical interest, the formation of instantons in a single step is 
exponentially inhibited. 

Generation of instantons by a sequence of small steps of order 
zlx ~ x / ~ / m  is strongly inhibited by the fact that the sequential changes 
Ax~ at each time slice are totally uncorrelated. In the absence of the barrier, 
the distance would only increase as x / ~  where N is the number of steps, 
and with the barrier the evolution becomes heavily biased toward remain- 
ing in the original well. Hence, the net effect is that as 8---, 0 the Markov 
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walk gets stuck in a local minimum with a fixed number of instantons and 
does not sample the full space in any realistic computation time. Note that 
this disease is in no way restricted to the Metropolis algorithm. Any 
microreversible method in which changes at sequential points are 
uncorrelated--for instance, solution of the Langevin equation--suffers a 
similar fate. 

Within a sector os specific instanton number, sequantial updating 
efficiently sums fluctuations around the classical path, even when higher 
than quadratic terms are important. Typical results are shown in Fig. 2. 
Note particularly that although the average behavior of the trajectories 
closely follows the instanton in the classically forbidden region, the average 
is displaced away from the minima in the rest of the space, reflecting 
significant contributions of anharmonic terms. Thus, we conclude that 
sequential updates are good at summing local fluctuations around 
stationary paths, but may fail in producing the global changes required to 
sample all sectors of the trajectory space. 

Once the essential problem with sequential updates has been 
recognized, it is possible to introduce several generalizations to include 
instanton physics. One alternative for the symmetric function F(2 ~ yr)  is 

(o) (b) 

x(r) 

-I 

x(T) 

-I 

2" "r 

Fig. 2. Trajectories in the one-instanton sector. The left panel shows a typical configuration. 
The right panel compares the average over many such trajectories in the frame on the instan- 
tons (solid points) with the classical instanton (solid curve). 
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to define the following correlated additive trial move for the entire trajec- 
tory 

x[=xi+afi  a =  • (3.10) 

Here, f~ is some global change defined on all the time slices and a is a ran- 
dom variable with value _ 1. In order to make the move reversible, f must 
be randomly added and subtracted, with the disadvantage that half the 
moves are thereby sure to be rejected. A physical choice for f i n  calculating 
the trace in a double well is the two-instanton configuration sketched in 
Fig. 3. Here ~. = tan h ? ( ~ -  %) + tan h?(%- Ti) - 1. The cost in action for 
such a global change is distributed around the classical result and assures 
that the equilibrium distribution of instantons is built up. Note that if the 
positions xs and x, are also picked randomly, subsequent updates will 
change the instanton number by _+2 and distribute the instantons ran- 
domly. 

A second option is a multiplicative move of the form 

P(2--) f ) =  1 +]-Ii=, 3 +l-~ a,6(xe-~y,) (3.11) 
\ G g i / /  i 

Note that for a general scale change, the weight factors are required for 
symmetry. For the present case, we may use ~ = - 1  for a sequence of 
points of arbitrary length, thereby reflecting them into the opposite well. 
For small e, one must also include a smooth function across the barrier. 

Finally, in addition to the introduction of collective moves, one always 
has the option of using importance sampling. We define a function N(2) 
which counts the number of instantons in a configuration, and write the 
tautology 

f d~.C(X) e-S(X)=f dY[(O(X) e ~N{~'] e-[SV"-'x(~)] (3.12) 

A . A ^  A A ^  ~ A . ~  
V v  v v  v ~ v v  

+ / \ 

B 

~ A A  
�9 - v 

~ v / ' '  v L ~ % ,  ^ 

Fig. 3. The effect of adding a two-instanton trial move to a trajectory localized in a single 
well. 
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By adjusting e, one can make the acceptance of instantons in the 
Metropolis updates arbitrarily desirable and thus control the average num- 
ber of instantons. Although the extraneous factor is exactly divided out in 
evaluating observables, if the quantity of interest is dominated by multi- 
instanton configuration, the technique lives up to its name by preferentially 
sampling the space in the "important" regime. Note also that the definition 
of an instanton doesn't need to be absolutely precise: as long as N(2) 
counts configurations in the desired sector, it will introduce configurations 
in this sector that subsequently properly equilibrate. Using these techni- 
ques, it is straightforward to calculate the energy splitting in a double well 
(3.6); detailed results may be found in Ref. 14. 

We now address each of the steps required to calculate the lifetime of a 
metastable state in a potential of the form shown in Fig. 1. Although every 
step may be carried out equally well using guided random walks, at this 
conference it is appropriate to use the Metropolis algorithm to sample the 
action. First we must adjust the boundary a to render VL and VR 
degenerate. 

Because difference expressions for the kinetic energy are subject to 
large variance, it is preferable to use the virial theorem to replace ( T )  by a 
local expression. Retaining the surface terms arising from the nonher- 
maticity of the boundary condition, we obtain, for an arbitrary x0 

(Ol [H, p(x--xo)] ]0) = 2 ( T ) -  ((X- Xo) V'(x) ) 
= (hZ/2m)(x-xo)10'[=1~ 

(3.13) 

Hence, the presence of a single hard wall may be accommodated by 
selecting Xo = a, and the energy may be written 

E= (V+ l(x-a) V') (3.14) 

The derivative dE/da is needed for two reasons: to improve the 
precision of determination of a and to determine the density of states in 
factor contributing to 7. An infinitesimal rescaling of the Schr6dinger 
equation of the form y = [al(a + 6a)] X yields 

-2m[l+(6a/a)]2~y~+V 1+-~- y ~t+E(a+6a) 0 (3.15) 

so that, using the virial theorem 

dE d a = 1 2 T + x V ' l = l  (2xS-a)a V'(x)l (3.16) 
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Finally, it is desirable to incorporate the hard wall boundary condition in 
the path integral to the same accuracy in e as the rest of the 
approximations. Although for smooth potentials, the infinitesimal evalution 
operator exp - (m/2e)(x ,  - x ,  1)2 _ e{  [ V(x  n_ 1) -'}- V(x , ) /2]  } produces 
errors in observables of order e2; for a hard wall the wave function is of 
order , , /7 errors in observables. The cure is to generate the path integral 
using states that are odd about x = a, with the result 

( ( , x , [ - ~ 2 a - x , I ) e  ~H[x, 1) 

= (2mrc/e) 1/2 e-(m/Z')(x, x._l) 2 

• _ e - ( 2 m / e ) (  . . . . .  )( . . . . .  1)) (3.17) 

This antisymmetrization just subtracts off the Green's function 
corresponding to the first image across the boundary, and one can 
explicitly verify for the first odd state of the harmonic oscillator that this 
leading error is of (~(e 2) when images are included. 

Finally, all these results may be combined to determine the lifetime of 
a metastable state. A test problem of the form shown in Fig. 1 was con- 
structed from continuously connected parabolas. The energy splitting for 
the corresponding degenerate well was obtained as shown in Fig. 4 from 
3Eerf=: (2//~)tan h 1R, where R is the ratio defined in (3.3) and a correc- 
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tion factor arising from the fact that ( 11 ~L )/<0[ ~L ) and ( 1 [~R U<01~R ) 
is unequal in magnitude for an asymmetric well .  The result 
AEmc = (3.85 _+ .22)x 10 3 is in excellent agreement with the exact result 
AE= 3.82 x 10-3. Including the density of states, factor dE/da yields a final 
Monte Carlo result for the inverse lifetime Vmc= (3.4 +_ .41) X 10 -4, in good 
agreement with the exact result V = 3.32 x 10 4. Since previous experience 
with similar problems indicates that accuracy is not seriously degraded in 
going from one-body test problems to a many-body problem of the form 
treated in this work, and since only a modest sample size N ~  105 was 
required for this calculation, it is reasonable to expect this approach to be 
applicable to the many-body problem. 

4. P E D A G O G I C A L  NUCLEAR M O D E L S  

Since, by the arguments presented in this introduction, Monte Carlo 
calculations of realistic nuclear systems are not yet feasible, the studies 
presented here address simplified pedagogical models. By providing 
solutions which are exact to within controlled statistical errors, path 
integral Monte Carlo calculations offer the unique opportunity to study 
specific aspects of nontrivial many-body problems without the usual 
ambiguities associated with crude, uncontrolled many-body 
approximations. The most essential simplification of the two models dis- 
cussed below is the restriction to one spatial dimension, which enables us 
to evaluate Feynman path integrals for many fermions in an ordered sub- 
space with no delicate cancellations arising from antisymmetry. 

Nuclear Potent ial  Model  

In order to construct a one-dimensional model as relevant as possible 
to nuclear physics, it is desirable to define a saturating system interacting 
with a two-body potential exhibiting the qualitative behavior of the nuclear 
force. To define the potential quantitatively, it is useful to require that 
relevant dimensionless ratios be comparable in one and three dimensions. 
The fundamental length scale in a saturating system is specified by the 
saturation density Po, and so by denoting the dimension by D we define 
lo = Po lID = 1.89 fm in three dimensions. To within uninteresting 
geometrical constants, lo specifies the characteristic distance between par- 
ticles. The Schr6dinger equation may then be reduced to dimensionless 
form by measuring all lengths in units of l 0 and energies in units of 
E o =h2/mlo2= 11.6 MeV. The potential used in this work was defined in 
Ref. 3 such that the scaled binding energy per particle, (E/A)/Eo, fermi gas 
kinetic energy per particle, (T/A)/Eo, core radius, ro/lo, and maximum 
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attraction, Vmax/Eo, are roughly comparable to the three dimensional 
values. 

A crucial consideration in practical calculations is extrapolation of 
observables as the time step e ~ 0. The evolution operator used in this 
work is formally accurate to order e 2, but one still needs to know how 
small e must be in order for quadratic convergence to set in. As argued in 
the introduction, since the Gaussian factor confines A x ~ x / 7  and the 
smallest characteristic scale of variation of the potential is 0.2, one would 
expect to see convergence at e~(0 .2)2=0.04 .  From Monte Carlo 
calculations of the binding energy of nuclear matter, one observes that the 
heuristic estimate e ~ 0.04 is quite reasonable and that sufficiently accurate 
results are obtained using the order of 10 4 to  10 5 independent events. 
Because of the large values of fi required to treat collective motion, fission 
calculations were carried out using e = .05. It is often useful to think of the 
error introduced by finite e as a renormalization of the bare Hamiltonian, 
H~ = in e - ~( v/2)e - ~ re ~(v/2). Calculated binding energies for 2 to 16 particles 
are well-reproduced by a semiempirical formula of the form 
BE(A)  ,~ EoA - E s ,  where E0 is the nuclear matter binding energy obtained 
by placing six or more particles in a cell with periodic boundary conditions 
and varying the length of the cell. 

In order to produce spontaneous fission, a long-range repulsive 
interaction must be added to the Hamiltonian analogous to the Coulomb 
interaction. In the present case, the range and strength were adjusted so 
that a 16-particle system was stable with respect to single-particle emission, 
and unstable with respect to fission into two, 8-particle fragments, and so 
that the fission barrier was as high as possible. 

Ground-state density distributions for three nuclei with this force are 
shown in Fig. 5. Note that, due to the long-range repulsion, the average 
interior density is slightly lower than the saturation density po = 1.25 
(defined without this repulsion). The quantum density fluctuations are 
especially interesting. In the two-body system, antisymmetry forces the den- 
sity to vanish at the origin, and the size of the low-density region is 
increased by the repulsive core. In nuclei as large as A = 8, the density fluc- 
tuations are comparable to those arising from single-particle wave 
functions in a smooth potential well. 

It is important to note that as in the case of real nuclei, the one-dimen- 
sional model incorporates dynamics on two very different energy scales: 
short range correlation effects involving very high kinetic and potential 
energies and collective dynamics including fission at much lower energies. 

It is straightforward to generalize the stochastic tunneling calculation 
for a single degree of freedom in the previous section to the fission of a 
metastable 16-particle nucleus. A collective fission variable must be iden- 
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tiffed for two reasons. To obtain the lifetime from the phase shift in the 
fission fragment channel, a hard wall forcing a node in the relative wave 
function must be introduced as in the one-dimensional example. In 
addition, it is necessary to offer instanton configurations. The ambiguity, in 
principle, in defining a collective fission variable is no problem, since any 
definition must reduce to the relative fragment separation at the outer 
boundary and any reasonable definition which connects the inner and 
outer local mimima suffices to sample all multiple instanton sectors. In this 
work, it suffices to let 

X i - -  X i 
r ~ g  i i = 1  

Because of the simultaneous vanishing boundary conditions at r = a 
and at all the boundaries xi+l  = x i ,  shifts in the virial theorem cannot 
eliminate all 1~9'12 contributions, and the small correction at the boundary 
x8 = x9 must be calculated explicitly. 
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Since we have restricted the treatment to single-channel decay, the 
model must be defined such that only one channel is open. Because the 
energies of asymmetric fission channels are very close to the symmetric 
channel, it is convenient to impose the additional symmetry on the 
problem that all states be symmetric with respect to reflection about the 
center of mass. This symmetry may be imposed on the mean field theory as 
well, providing a nontrivial single-channel model for comparing mean-field 
theory with an exact solution. 

To calculate the energies in the inner and outer wells and to calculate 
the (eLI E ~H [r element pertinent to the fission lifetime, a num- 
ber of different trial moves were offered in each iteration of the Metropolis 
algorithm: 

1. Sequential updates. The coordinates of x~ for each of the 16 particles 
on each of 400 time slices were sequentially updated during each sweep. 
Irrespective of all the other moves, these sequential updates summed 
the fluctuations around each of the dominant solutions. 

2. Dilational modes. The low-energy collective excitations require the 
greatest number of iterations to be refined out of the ground-state wave 
function. This refinement takes even longer when sequantial updates 
rarely present dilations or contractions of the entire system. Thus, 
equilibrium is significantly accelerated by offering a multiplicative scal- 
ing mode x;n= ax7 to the lattice as a whole once each iteration. 

3. Sequential updates in r. Moves in the single-particle variables xi, which 
are small enough to avoid rejection by virtue of the strong repulsive 
core, are very ineffective in introducing changes in the collective 
variable r large enough to explore all relevant values of r. Thus, with 
each iteration, the value of r on each time slice is sequentially updated 
just like the coordinate of a single particle in a collective well. 

4. Instantons in r. Finally, after offering each of the preceeding updates, 
an additive instanton in r of random length in time is offered. The 
approximate shape of the instanton was determined from the energy of 
deformation surface specified by a constrained Hartree-Fock 
calculation and confirmed by calculating the equilibrium distribution in 
the one-instanton sector analogous to Fig. 2. 

The net result of offering all these alternative moves is a statistically 
viable evaluation of all the ingredients EL, ER, ~ER/Oa, and 
(eLl e ~H ]OR)/[ (OL[ e -r [~bc)(r e -r [~R)'] 1/2 required to calculate 
the lifetime. An example of a typical contribution to (eL[ e-~H [r in the 
one instanton sector is shown in Fig. 6. Note that the many-body trajec- 
tory clearly exhibits separation into two-fission fragments and the 
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Fig. 6. Typical configurations of the 16-particle system in the one-instanton sector. The left- 
hand panel shows the coordinates of each of the 16 particles on 400 time slices and the right- 
hand panel shows the corresponding trajectory of the collective coordinate. 

corresponding trajectory for the collective coordinate has the same 
behavior as the single-particle example in the preceding section. 

The principle result is the fact that the method can be made to work, 
even for a problem as demanding as this nuclear model containing two 
significantly different energy scales. 

Conf in ing Quark Model  

The confining quark model of Ref. 16 provides a convenient system 
in which to study how certain aspects of nuclear structure arise from 
underlying quark degrees of freedom. By studying the model in one spatial 
dimension, it is possible to obtain exact solutions for uniform matter 
described both in terms of quark and hadronic degrees of freedom and thus 
explore the complementarity of the two descriptions. (4) 

Physically, the model may be thought of as an adiabatic limit in which 
for any configuration of 2N spinless quarks, the color fields instantaneously 
adjust themselves to form the lowest energy configuration in which N dis- 
tinct pairs, of quarks are connected by flux tubes. Mathematically, the 
model is defined by specifying a potential energy of the quarks to be 

V = m i n  {V(Xpl - -Xpz) -} - l ) (Xp3- -Xp4)-[ -  "'" Al-l)[Xp(N I ) - - X p N ] }  (4.4.1) 
P 
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where the minimum overall permutation selects the lowest energy 
assignment of pairs. The theory exhibits the desired separability, con- 
finement, and exchange symmetry and is free of Van der Waals interac- 
tions. Although finding the optimal pairing in three dimensions entails 
solution of a nontrivial assignment problem, in one dimension with 
periodic boundary conditions, the optimal pairing of consecutively labeled 
quarks either pairs qzm with qzm+l or q2m with q2m--1 for all m. Hadrons 
are composed of two quarks in the simplest version of the model used here, 
and are thus bosons. The potential v(x) is taken to be quadratic, yielding a 
quark density in a free nucleon proportional to x2e-(X2/'/~). 

It is instructive to compare observables calculated in this model with 
the results obtained from an effective Hamiltonian having only hadronic 
degrees of freedom. As in traditional nuclear physics, a hadron-hadron 
potential may be defined to reproduce the exact hadron scattering phase 
shifts, and the many-hadron problem is solved with this potential. We find 
that a gross property such as the hadronic matter binding energy as a 
function of density is well-reproduced by this effective Hamiltonian, 
whereas the quark-quark correlation function and quark momentum dis- 
tributions, which would be probed in deep inelastic electron scattering, 
reflect the underlying quark structure. 

The phase shifts for the scattering of a two-quark hadron from a two- 
quark hadron may be solved stochastically below threshold by calculating 
the ground state of the four-quark system with the appropriate boundary 
condition on the distance between the centers of mass of the left two 
quarks and the right two quarks; Monte Carlo results are shown in Ref. 4. 
Since the phase shifts in this energy range are evidently characterized by a 
scattering length and an effective range, they are easy to reproduce with a 

simple local potential VN(X)= (52/ , , /~)e (x~/2~. Of the two effects which 
occur for overlapping hadrons--diminuation of the potential interaction 
energy and increased kinetic energy due to the Pauli principle--the later 
effect dominates and the interaction is purely repulsive. 

The binding energy per quark of uniform nuclear matter is shown in 
Fig. 7. Stochastic solution of the many-quark problem yields the solid dots, 
and the many-hadron problem defined by bosons interacting via the 
phenomenological potential VN(X) yields the triangular points. 

In order to calibrate densities in the one-dimensional model, it is 
useful to note that the ratio fN/PNM = (1.1)3, where fiN denotes the average 
density in a proton of uniform density and the observed rms charge radius, 
and fNM is nuclear matter density. Since the average density of a hadron in 
the one-dimensional model is fH = 0.5, a corresponding degree of overlap 
obtains at a hadronic matter density film = 0.5/1.4 ~ 0.45. Thus, we observe 
from Fig. 7 that up to densities twice that of hadronic matter, the binding 

822/43/5-6-19 
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Fig. 7. Monte Carlo calculation of the binding energy per quark of uniform matter 
calculated with the quark Hamiltonian (circles) and the effective hadron Hamiltonian 

(triangles). 

energy yields no signature of quark substructure or, equivalently, of the 
breakdown of the descriptions in terms of hadronic degrees of freedom. 

A microscopic view of the quark behavior is provided by the quark- 
quark correlation functions shown in Fig. 8, which specify the probability of 
finding another quark a distance x from a given quark. The normalization 
is defined such that at density p corresponding to n particles in a periodic 
box of length L, the integral of the correlation function from 0 to L is 
L(n-1), thus counting the ( n - 1 )  remaining particles. The Fermi gas 
correlation function then approaches 1 in the interior of the box and 
approaches zero within range 1/k F of 0 and L as shown by the long dashed 
lines. At very low density, one would expect the correlation function to 
look like the undistorted ground state nucleon density at short distances 
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Fig. 8. Quark quark correlation functions as described in the text. 

and approach a constant corresponding to the low-density nucleon gas at 
large distances. Hence, the appropriately normalized density distributions 
for a single hadron are also shown in Fig. 9 by the short dashed curves. As 
observed in the top portion of the figure, at p = 0.27, roughly half the den- 
sity of hardonic matter, the quark distribution exhibits the low density 
behavior of undistorted hadrons. At p=0.5, however, corresponding to 
hadronic matter density, the nucleon correlations have nearly disappeared 
and the correlation function is close to that of a fermi gas. Note that at this 
density, the binding energy is still well-represented by the effective 
hadron-hadron potention. An analogous transition between the hadron 
momentum distribution and a Fermi gas distribution is observed in the 
quark momentum distribution. At hadronic matter density, one observes 
the enhancement at high momentum, enhancement at low momentum, and 
depletion at intermediate momentum characteristic of the EMC effect. 

This provocative coexistence of bulk properties, accurately governed 
by an effective Hamiltonian containing only hadronic degrees of freedom 
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while leptonic probes reveal definite signatures of quark substructure, is 
presently being investigated in more realistic confining models in three 
dimensions having nucleons comprised of three quarks. ~17) 

5. S U M M A R Y  A N D  C O N C L U S I O N S  

We are beginning to learn to exploit the freedom in formulating 
algorithms to incorporate physics into quantum Monte Carlo calculations. 
In addition to the familiar use of trial functions to generate guided random 
walks, I have shown that collective updates in the Metropolis method can 
incorporate one's understanding of semiclassical instanton solutions in tun- 
neling problems with many degrees of freedom. 

Although realistic Monte Carlo calculations of heavy nuclei are 
presently impractical, the exact solution of pedagogical models can provide 
useful insight into aspects of both nuclear and subnuclear structure. 

In looking to the future, four challenges in particular stand out. One is 
the infamous fermion sign problem, and we can only hope that the ideas 
such as those discussed by Kalos and Koonin will eventually bear fruit. 
The second is calculation of the real-time response function S(k, w). In the 
case of fission, we were very fortunate that the essential information gover- 
ning the lifetime in real time could be extracted from the gap, that is, the 
energy splitting between the two most slowly decaying exponents in  
imaginary time. The general response function, however, which is required 
to study the rich data provided by inclusive lepton scattering, has delicate 
interference effects in real time which thus far have proven impossible to 
study with Monte Carlo. The third challenge is to find ways to calculate 
linked rather than unlinked quantities. Finally, we need to learn eventually 
how to exploit the impressive Monte Carlo studies of lattice gauge theories 
to answer fundamental questions about the nature of hadronic interactions 
and the role of quark and gluon degrees of freedom in real nuclei. 
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